3.2 Alice

Alice is a chatterbot developed by Dr. Richard S. Wallace of Lehigh University,
Pennsylvania, USA [39]. Alice is an acronym for Artificial Linguistic Internet
Computer Entity. The Alice open source is available in Java (among others)
and is distributed under the terms of the GNU General Public License!. Alice
can be reached at www.alicebot.org.

The idea behind Alice is in fact nothing more than Weizenbaum’s Eliza;
the main differences are a nnich larger database with patterns and the tools
for creating new content by dialog analysis. The knowledge represented in
the patterns is represented m a XML specification called Artificial Intelligence
Markup Language (ATML).

Alice won the Loebner Contest 2000 for keeping the most human conversa-
tion. Talking to Alice gives you an idea why she won. Most responses contain
the answer to the question asked, and otherwise she will give you the impression
she understands what you are talking about. Moreover, she uses pickup lines
to actively start a new conversation about a specific topic. The online Alice on
www.alicebot.org logs the IP addresses of the visitors, so she can recognize
you if you visit her again. She will know the topics yon have discussed, your
favorite color, food and of course your name.

Ysee http://www fsf.org/copyleft/gpl.html

3.2.1 AIML

AIML is a XML specification especially developed for the Alice project [39].
Thanks to the clear syntax of the categories and the available libraries containing
over 22.000 categories, it is easy to create a new bot with unique features.
The most important aspect of AIML is the fact that people who already know
HTML will find developing AIML relatively easy. The categories in AIML can
be compared to the rules of a grammar. The algorithm finds the best matching
pattern for each input. The category connects the stimulus pattern directly
to the response template. All AIMIL categories belong to one of three groups:
atomic, default or recursive,

An example AIML category
This is a simple default AIML category:

<alice>

<category>

<pattern> * </pattern>
<template>Hello</template>
</category>

</alice>

'T'he <alice>...</alice> tags indicate that this file describes the knowledge
of a chatterbot. The <category> tag indicates an AIML category, the basic
unit of a bot’s knowledge. The category has a <pattern> and a <template>.
The pattern in this case is the wildcard symbol * that matches one or more
words. 'I'he template represents the bot’s answer. 'I'his simple bot just responds
by saying "Hello” to any input.

Atomic categories

Atomic categories contain no wildcards. This is an atomic category:

<category>

<pattern>WHAT IS A CIRCLE</pattern>

<template>A cicle is a the set of points equidistant from
a common point called the center.

</template>

</category>

Default categories

Default categories contain exactly one wildcard. The ultimate default category
is the category from 3.2.1.

<category>

<pattern>I1 NEED HELP * </pattern>
<template>0K, tell me more.
</template>

26

</category>

This category responds to a number of questions like "1 need help debugging
my program” and ”T need help with iy marriage”.

Recursive categories

Recursive categories are used because often the same answer can be given to
various imputs:

<category>

<pattern>BYE BYE</pattern>
<template><srai>GOODBYE</srai>
</template>

</category>

Once the user enters "hye bye”, the phrase ”goodbye” is re-evaluated by the
pattern matcher. This is done by the <srai> tag. This way, multiple greetings
like "bye”, "hye bye” and "see you” are all reduced to "goodbye”. A pattern
matching "goodbye” should then respond with an appropriate answer.

Alice’s main advantage is the fact that her source code is open source. This
encourages people to write their own AIML, which resulted in over 22.000 cate-
gories so far. Alice stores the categories in alphabetical order by pattern. When
a client enters an input, the program scans the categories in reverse alphabet-
ical order to find the best match. By comparing the mput with the pasterns
in reverse alphabetical order, the algorithm ensures that the most specific pat-
tern matches first. ’Specific’ in this case means that the program finds the
longest pattern matching an input. 'L'he wildcard character * comes before *A’
in alphabetical order. For example, the

WHAT «
pattern is more general than
WHAT IS *

The default pattern x is first in alphabetical order and the most general pattern.
For convenience, ATML also provides a variation on x denoted '_’, which comes
after 'Z’ in alphabetical order.

Once the most specific matching pattern has been found, the template in
that category is executed. If the pattern contains a wildeard, the value of this
wildcard can be used in the template using the <star> tag.

<category>

<pattern>ARE YOU VERY x </pattern>
<template><srai>ARE YOU <star/></srai>
</template>

</category>

o
~1

This recursive category reduces ” Are you very smart” to ” Are vou smart”.
Additionally, several <get> and <set> methods can be used to store and
retrieve variables. These variables contain information about the bot’s name,
gender, birthday and location and the user’s |P address, name and other in-
formation. The topic of the conversation and the last reply of the bot can be
stored and retrieved using the <topic> and the <that> tag.

3.2.2 Pattern matching

The pattern matching used by Alice starts with analyzing the words in the
phrase entered by the user [39]. These words are in natural language, separated
by spaces and converted to uppercase to enable case independent matching.
If a matching category is found, it is possible that the category is a recursive
category. If this is the case, the target phrase will be altered and evaluated
again by the pattern matcher. This adds the wildcard symbols x and .7 to the
pattern language. Many ATML patterns start with the same words:

WHAT IS A CLOUD
WHAT IS A =
WHAT IS *

WHAT QUESTION
WHAT

All these patterns overlap in one or more words. This fact suggests the use
of a tree to store the patterns in. Alice uses a rooted, directed tree. Each
node in the tree contains a hashtable, which is used to store its successor nodes.
This way, pattern matching time is almost constant independent of the number
of categories. It only depends on the length of the sentence; the longer the
sentence, the longer the time to find a matching pattern. Yet, this relation is
linear. All patterns are stored in alphabetical order; this means that

WHAT _

comes hefore
WHAT QUESTION

and is considered first. but the latter on its turn comes before
WHAT =*

so wildcard patterns can be checked either before or after the normal patterns.

The reasoning behind finding the way through the tree of categories is done
by considering two possible cases:

1. The sentence is empty, there are no more words to process. If the node is
a terminal node, a match is found. If the node is not a terminal node, the
matching pattern does not exists. "I'he best match is the last matching
pattern containing a *. For example,

WHAT IS A COMPUTER

does not perfectly match one of the five patterns shown earlier. Therefore,
the matching pattern will be

WHAT IS A =

2. The sentence is not empty and contains at least one word. If the first
word of the sentence is equal to one of the successors of the current node,
the next node is entered with all but the first word. This way, every step
from node to node reduces the length of the sentence by one. Then, the
process starts over again.

The number of recursive calls is thus limited to the number of words in
the sentence. I'he process described above changes slightly when a wildcard is
detected. If one of the successors of the current node is a wildcard, a separate
routine is used to check whether the words match the wildcard. If the successor
containing the wildcard is a terminal node, any sentence matches. For example,
the phrase

WHAT IS A CHATTERBOT CAPABLE OF
matches the pattern
WHAT IS A «

If it is not a terminal node, a recursive method tries to match all substrings
of the current phrase with the current nocle. If this succeeds, a match is found.
If it fails, the best match is the last wildcard match found. [n the worst case,
the pattern consisting of just x, the most general match, will be used. Usually,
this pattern contains very general replies.

3.3 Alice and ATIML versus grammars and parsers

Eliza can be considered a basic FSTN with some additions; it has an option to
reuse different parts of the Eliza scripts during pattern matching and a FIFO
memory stack where user phrases can be stored. These can later be used to
refer to a previous topic. These two features are in fact functionalities of RTNs
and ATNs; the reuse of seript code (although no real recursivity) and the use
of a memory stack.

Obviously, Alice contains these features as well, although in a more advanced
form. The reuse of AIML by using recursivity is done by the <srai> tag as
described in section 3.2.1. This tag can be used for both redirecting and re-
evaluating (parts of) user input. Besides, words or whole sentences can be
stored in memory by using the <get> and <set> tags. Special <get> and
<set>> tags are the <gettopic> and <settopic>> tags, which get and set the
current topic of the conversation. The words describing the topic do not have
to be words the user entered. An AIML developer can set the topic manually
for fairly specific categories:

<category>

<pattern>D0 YOU LIKE CATS AND DOGS</pattern>
<template>Yes, I like them very much.

29

<think><settopic>pets</settopic></think>"
</template>
</category>

Later on during the conversation, the following category could be selected:

<category>

<pattern> x </pattern>

<template>Let’s talk some more about <gettopic/>.
</template>

</category>

which results in
Let’s talk some more about pets.

Besides a pattern and a template, a AIMIL category can contain <that> and
</that> tags. <that> refers to the last reply from the bot and can be used
to create context-specific answers. Examples will be shown in chapter 4 on
Development.

Although traditional grammars only describe the syntax, AIML actually
checks a part of the semantics, because no abstract categories (i.e. noun phrase,
verh phrase) are used. Contradicting the idea behind RTNs, all AIML consists
of actual words instead of abstract categories. Admittedly, this prevents the use
of small recursive datastructures for representing the AIML and consequently
results in about 3MB of text for 22.000 categories. However, consider the fol-
lowing sentence:

Green ideas sleep furiously
Obviously, this phrase does not make any sense. On the other hand:
Young trees grow fast

has exactly the same syntactic structure. Using AIML, this results in fast recog-
nition of non-semantic sentences. This way, time is saved and a not-understood
reply can be formulated. Most user interfaces are (supposed to be) realtime;
users want a conversation without waiting for the parser to finish. The pars-
ing mechanism of Alice, as described in section 3.2.2, can parse sentences in
(near) linear time because of the flattened structure of AIML, independent of
the database size. Therefore, the time complexity s O(n) with n the length
of the sentence. Compared to breadth-first and depth-first search with time
complexities of O(b*) (where b is the branching factor and x either the depth
of the solution or the maxinum depth of the tree) Alice is very fast. This is an
important requirement for natural language interface systems, as human to hu-
man conversations are usually fluent without relatively long pauses in between.
Eventually, once the tree becomes to large, the calculation of the reply takes
up too much time; more than a few seconds becomes already annoying. The

?The <think></think> tags prevent all text in between from appearing on screen.

low complexity can be explained by the fact that Alice is a simple stimulus-
response machine. Whereas parsers produce a syntactic structure that has to
be interpreted before an answer to the question can be given, Alice’s parser
leads directly to the response.

3.3.1 First, second and third person

Sometimes, a reply is formed by reformulating the user's question. However, if
the phrase contains a pronoun like ’I’ or your’, this word has to he transformed
into the right form. The <person>...</person> tags exchange first and third
person:

Alice, tell me something about you please
What do you want to know about me?

Additionally, <person2>...</person2> tags interchange first en second per-
son.

3.3.2 Wildcards

Whereas a grammar can produce syntactically correct sentences by walking
along its nodes, AIML can not. The reason for this is the occurrence of wild-
cards; characters that represent one or more words. A lot of the patterns in
AIML categories contain a wildcard and it is unknown which words from the
user input will match the wildcard. Consequentially, only small parts of the
language can be reconstructed by looking at the AIML. Eliza scripts contain an
even more general wildcard; this wildcard matches no or more words, instead
of one or more. This fuzziness makes it possible however to create nonsense
sentences that actually are accepted by the AIML. Take for example the most
general AIML category (see section 3.2.1) which will match any input. There-
fore, any sentence will be accepted if this category is loaded. This adds to the
robustness of the system by trying to interpret partial correct phrases, but at
the same time it undermines the credibility of the system which will keep re-
sponding to the strangest user inputs. An AIML pattern can only contain one
wildcard for a number of reasons:

e Basic AIML should be as simple as possible for non-programmers.

¢ Many problems that could be solved with multiple wildcards can also be
solved with other AIML tags, such as <srai>.

o Multiple-wildcard patterns have ambiguous matching properties such as
the 7« AND " with sentences like ” John and I worked and played”.

3.3.3 More tags

AIML contains even more tags, like <condition> and <random> to test if a
variable has a certain values, and to pick a random reply. Tag combinations
that occur often can be abbreviated, like <srai><star/></srai> can be
rewritten as <sr/>.

Appendix C

Links

General links

InfoBots

The Alice Nexus

Alice at SourceForge.net

The Loebner Prize Competition
The Simon Laven Page

GNU General Public License
Free CGI server space

Other chatterbots

www.infobots.nl

www.alicebot.org
sourceforge.net/projects/alicebot/
www.loebner.net/Prizef/loebner-prize.html
www.toptown.com/hp/sjlaven
www.fsf.org/copyleft/gpl.html
www.mycgiserver.com

Alison

Ally

Claude

Eliza

Elvis

Hex

Hippie

John Lennon
SHAMpage

Commercial applications

alison.alicebot.com
www.accessterminal.com/L.html
www.basicguru.com/mclaughlin
ecceliza.cjb.net
elvis.alicebot.com/~acraig/index.htm
www.amristar.com.au/~hutch/hex
hippie.alicebot.com/cgi.html

www. triumphpc.com/john-lennon
www.toptown.com/hp/sjlaven/shampage.zip

Ask Jeeves

Native Minds
Artificial Life
Virtual Personalities
KiwiLogic

Centraal Beheer

Q-go

wWw.askjeeves.com
www.nativeminds.com
www.artificial-life.com
WWW.Vperson.cem
www.kiwilogic.com
www.centraalbeheer.nl
WWW.q~go.com

54

Bibliography

(1]
(2]

3]
(]

6]
17
g
19

10

1]

12)

13

1]

[15]
[16]

17]

[P, R, 4] op den Akker, R. et al. (1994). Natuurlijke Taal Interfaces voor Di-
aloogsystemen, Memoranda Informatica 94-04, January 1994.

[P, R] Artificial Life, Inc. (1999). Smart Bots: Solutions for the Networked Econ-
omy, white paper.

[P, R] Artificial Life, Inc. (1999). The Art of Bot Procreation, concept paper.
[P, R] Bates, J. (1994). The Role of Emation in Believable Agents, Technical
Report CMU-CS5-94-136, School of Computer Science, Carnegie Mellon Univer-

sity, April 1994. Also to appear in Communications of the ACM, Special Issue on
Agents, July 1994.

[4] Biermann, A. W. et al. (1983). An experimental study of natural language,
International Journal of Man-Machine Studies 18, 71-87.

[P, R] Boyce, S. J. (2000). Natural Spoken Dialogue Systemns for Telephony Ap-
plications, Communications of the ACM, Vol. 43, No. 9, 29-34.

[1] Bradshaw, J. M. (Ed.) (1997). Software Agents, Boston: MIT Press.

P, R, 2, 4] Capindale, R. A. and Crawford, R. G. (1990). Using o natural lan-
guage interface with casual users, International Journal of Man-Machine Stud-
ies 32, 341-361.

[P, 2] Carroll, J. M. and Rosson, M. B. (1987). The paradox of the active user, In
J.M. Carroll (Ed.), Interfacing Thought: Cognitive Aspects of Human-Computer
Interaction. Cambridge, MA: MIT Press.

[1, 2] Dix, A. et al. (1993). Human-computer interaction, Prentice-Hall.

[P, R, 2] Dreyfus, H. L. and Dreyfus, S. E. (1988). Making o Mind versus Model-
ing the Brain: Artificial Intelligence Back at a Branchpoint, Daedalus 177, 15-43.
[R, 3] Gazdar, G. and Mellish, C. (1989). Natural Language Processing in Prolog,
Cogsweb Project Books, March 1989.

[4] Grice, H. P. (1975). Logic and Conversation, in P. Cole and J.L. Morgan (eds.)
Syntax and Semantics 3: Speech Acts, Academic Press.

[4] Hauptman, A. G. and Green, B. F. (1981). A comparison of command, menu-
selection and natural language computer programs, Behaviour and Information
Technology, Vol. 2, No. 2, 163-178.

[2] Hill, I. (1983). Natural language versus computer language, in M. Sime and M.
Coombs (eds.) Designing for Human-Computer Communication, Academic Press.
[R, 2] Hutchens, J. L. (1996). How to Pass the Turing Test by Cheating, available
online’.

[R, 3] Hutchens, J. L. (1996). How Hex Works, available online®.

Lhttp://ciips.ee. uwa.edu.au/Papers/Technical Reports/1997/05/
2http://www.amristar.com.au/~hutch/hex/How.htm]

(18]

119]

120]

(21]

122)

23]
24]

25

126]
[27]
28]
[29]
130]

B31]
32]

33|

37]

38)

(2] Jarke, M. et al. (1985). A field evaluation of natural language for data retricval,
IEEE Transactions of Software Engineering SE-II, Vol. 1, 97-113.

[4] Kelley, J. F. (1983). An empirical methodology for writing user-friendly
natural-language computer applications, Proceedings of the CHI '83 Conference
on Human Factors in Computing Systems, ACM, New York, 193-196.

[P, R, 2] Kelly, M. J. and Chapanis, A. (1977). Limited vocabulary natural lan-
guage dialogue, International Journal of Man-Machine Studies 9, 479-501.

[P, R] Kubon, P. P. et al. (2000). An Extendable Natural Language Interface to o
Consumer Service Database, Proceedings of the 13** Bijannual Conference of the
Canadian Society for Computational Studies of Intelligence, Montréal, Canada,
May 2000.

[P, R, 1, 2] Lansdale, M. W. and Ormerod, T. C. (1994). Understanding In-
terfaces - A handbook of human-computer dialogue, San Diego, Academic Press
Inc.)

[R, 8] Linz, P. (1996). Introduction to Formal Languages and Automata, D. C.
Heath and Company.

[P, R, 2] Long, B. (1994). Natural Languege as an Interface Style, available
online®.

[] Maes, p. (1994). Agents that Reduce Work and Information Overload, Commu-
nications of the ACM, Vol. 37, No. 7, 31-40.

[P, R] Minsky, M. (1982). Why People Think Computers Can’t, Al Magazine,
Vol. 3, No. 4, 1932.

[P, R, 2] Mykowiecka, A. (1991). Natural language generation - an overview,
International Journal of Man-Machine Studies 34, 497-511.

[P] Nijholt, A. (1988). Computers and Languages - theory and practice, Elsevier
Science Publishers BV, 19388.

(P] Nwana, H. S. and Ndumu, D. T. (1999), A Perspective on Software Agents
Research, The Knowledge Engineering Review, Vol. 14, No. 2, 1-18.

[2] Petrick, S. R. (1976). On natural-language based computer systems, 1BM Jour-
nal of Research and Development, Vol. 20, 314-325.

[3?] Pinker, S. (1999). How the Mind Works, W. W. Norton & Company, 1999.
[R, 3] Russell, S. and Norvig, P. (1995). Artificial Intelligence - A modern ap-
proach, Prentice-Hall.

[P, R, 2] Searle, J. R. (1980). Minds, Brains, and Programs, The Behavioral and
Brain Sciences, Vol. 3, 417-457.

[2] Slator, B. et al. (1986). Pygmalion at the Interface, Communications of the
ACM Vol. 29, No. 7, 599-604.

P, R, 2] Turing, A. M. (1950). Compuling machinery and intelligence, Mind,
Vol. 59, No. 236, 433-460.

(2] Turper, J. A. et al. (1984). Using restricted natural language for data retrieval:
a plan for field evaluation, Human Factors and Interactive Computer Systems,
Norwood NJ: Ablex, 163-190.

[l Véronis, J. (1991). Ervor in natural language dialogue between man and ma-
chine, International Journal of Man-Machine Studies 35, 187-217.

[P] Vetulani, Z. et al. (2000). Corpus Based Methodology in the Study and De-
sign. of Systems with Emulated Linguistic Competence, Proceedings of the Second
International Conference on Natural Language Processing, Greece, June 2000.

3http://www.dgp.toronto.edu/people/byron/papers /nli.html

130)

(40}

[41]
[42]
143]

4]

(4]

[R, 8] Wallace, R. S. (2000). Don’t read me - A.L.I.C.E. and AIML documenta-
tion, available online®.

P, R, 1, 2, 8] Weizenbaum, J. (1965). Eliza - a computer program for the study
of natural language communication between man and machine, Communication
of the Association for Computing Machinery 9: 36-45.

[P] Weizenbaum, J. (1976). Computer Power and Human Reason - from judge-
ment to calculation, W. H. Freeman and Company, 1976.

[P, 2] Whalen, T. (1995). How I Lost the Loebner Contest and Re-evaluated
Humanity available online®.

[P] Winograd, T. (1980). What Does It Mean to Understand Natural Language,
Cognitive Science 4, 209-241.

[P] Yankelovich, N. et al. (1995). Designing SpeechActs: Issues in Speech User In-
terfaces, Proceedings of the CHI '95 Clonference on Human Factors in Computing
Systems, Denver, USA, May 1995.

[P, R, 2, 4] Zoltan-Ford, E. (1991). How to get people to say and type what
computers can understand, International Journal of Man-Machine Studies 34,
527-547.

thttp://www.alicebot.com /dont.html
Shttp://debra.dgrc.crc.ca/chat /story95.html

	bram_rooijmans1.pdf
	bram_rooijmans2.pdf
	bram_rooijmans.pdf

